

STRATEGIES AND METHODS OF WRITTEN SUBTRACTION

YEAR 5

Compact column subtraction for numbers with up to 5 digits

Continue to use counting up subtraction for subtractions involving money, including finding change

Use counting up subtraction to subtract decimal numbers

e.g. 4·2 - 1·74

Subtract related fractions

e.g.
$$3/4 - 1/8 = 5/8$$

NB Counting up subtraction provides a default method for ALL children

YEAR 6

Compact column subtraction for large numbers

Use counting up for subtractions where the larger number is a multiple or near multiple of 1000 or 10000

Use counting up subtraction when dealing with money

Use counting up subtraction to subtract decimal numbers

e.g.
$$13 \cdot 1 - 2 \cdot 37$$

10

0.03

0.03

0.01

13

13.1

Subtract unlike fractions, including mixed numbers

NB Counting up subtraction provides a default method for ALL

INSPIRE our children to succeed

YEAR 3

Counting in steps ('clever' counting)

Count in 2s, 3s, 4s, 5s, 8s and 10s

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

YEAR 4

Counting in steps (sequences)

Count in 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, 11s, 12s, 25s, 50s, 100s and 1000s

Doubling and halving

Find doubles to double 100 and beyond using partitioning e.g. *double 126*

Begin to double amounts of money e.g. £3·50 doubled is £7

Use doubling as a strategy in multiplying by 2, 4 and 8 e.g. 34×4 is double 34 (68) doubled again = 136

YEAR 3

Doubling and halving

Find doubles of numbers to 50 using partitioning e.g. *double 48*

Use doubling as a strategy in multiplying by 2 e.g. 18×2 is double 18 = 36

Grouping

Recognise that multiplication is commutative

e.g. $4 \times 8 = 8 \times 4$

Multiply multiples of 10 by 1-digit numbers

e.g. 30 × 8 = 240

Multiply 'friendly' 2-digit numbers by 1-digit numbers

e.g. 13 × 4

Using number facts

Know doubles to double 20

e.g. double 15 is 30

Know doubles of multiples of 5 to 100

e.g. double 85 is 170

Know ×2, ×3, ×4, ×5, ×8, ×10 tables facts

YEAR 4

Grouping

Use partitioning to multiply 2-digit numbers by 1-digit numbers

Multiply multiples of 100 and 1000 by 1-digit numbers using tables facts

e.g. $400 \times 8 = 3200$

Multiply near multiples by rounding e.g.

$$24 \times 19$$
 as $(24 \times 20) - 24 = 456$

Using number facts

Know times-tables up to 12 × 12

×	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	11	24
3	3	6	9	12	15	18	21	24	27	30	22	36
4	4	8	12	16	20	24	28	32	36	40	33	48
5	5	10	15	20	25	30	35	40	45	50	44	60
6	6	12	18	24	30	36	42	48	54	60	55	72
7	7	14	21	28	35	42	49	56	63	70	66	84
8	8	16	24	32	40	48	56	64	72	80	77	96
9	9	18	27	36	45	54	63	72	81	90	88	108
10	10	20	30	40	50	60	70	80	90	100	99	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

YEAR 5

Doubling and halving

Double amounts of money using partitioning

e.g. double £6.73

Use doubling and halving as a strategy in multiplying by 2, 4, 8, 5 and 20

e.g.
$$58 \times 5$$
 is half of 58×10 (580) = 290

Grouping

Multiply whole numbers and decimals by 10, 100, 1000

e.g.
$$3.4 \times 100 = 340$$

Use partitioning to multiply 'friendly' 2- and 3-digit numbers by 1-digit numbers

e.g.
$$402 \times 6$$
 as 400×6 (2400) and 2×6 (12) = 2412

Use partitioning to multiply decimal numbers by 1-digit numbers e.g. 4.5×3 as 4×3 (12) and 0.5×3 (1.5) = 13.5 Multiply near multiples by rounding e.g.

$$32 \times 29$$
 as $(32 \times 30) - 32 = 928$

YEAR 6

Doubling and halving

Double decimal numbers with up to 2 places using partitioning e.g. double 36.73

Use doubling and halving as strategies in mental multiplication

Grouping

Use partitioning as a strategy in mental multiplication, as appropriate

e.g.
$$3060 \times 4$$
 as 3000×4 (12 000) and 60×4 (240) = 12 240

e.g.
$$8.4 \times 8$$
 as 8×8 (64) and 0.4×8 (3.2) = 67.2

Use factors in mental multiplication

e.g.
$$3.42 \times 5$$
 as half of $3.42 \times 10 = 17.1$

Multiply decimal numbers using near multiples by rounding

e.g.
$$4.3 \times 19$$
 as $(4.3 \times 20) - 4.3 = 81.7$

INSPIRE our children to succeed

YEAR 3

Build on partitioning to develop grid multiplication e.g. 23 × 4

×	20	3	
4	80	12	= 92

YEAR 4

Use grid multiplication to multiply 3-digit numbers by 1-digit numbers

×	200	50	3	
6	1200	300	18	= 1518

Use a vertical written algorithm (ladder) to multiply 3-digit numbers by 1-digit numbers

Use grid multiplication to multiply 2-digit numbers by 2-digit numbers

×	10	6		
40	400	240	=	640
8	80	48	=	128
				768

INSPIRE our children to succeed

YEAR 5

Grid multiplication of numbers with up to 2 decimal places by 1-digit numbers

e.g.
$$1.34 \times 6$$

×	_	0.3	0.04	
6	6	l·8	0.24	= 8.04

Multiply fractions by 1-digit numbers e.g. $3/4 \times 6 = 18/4 = 42/4 = 41/2$

NB Grid multiplication provides a default method for ALL children

YEAR 6

Short multiplication of decimal numbers using × 100 and ÷ 100

e.g.
$$13.72 \times 6$$
 as $(1372 \times 6) \div 100 = 82.32$

Short multiplication of money

Grid multiplication of numbers with up to 2 decimal places by 1-digit numbers

×	6	0.7	0.06	
4	24	2.8	0.24	= 27.04

Multiply simple pairs of proper fractions e.g. $1/2 \times 1/4 = 1/8$

NB Grid multiplication provides a default method for ALL children

INSPIRE our children to succeed

YEAR 5

Short multiplication of 2-, 3- and 4-digit numbers by 1-digit numbers e.g. 435×8

Long multiplication of 2-, 3-and 4-digit numbers by 'teen' numbers e.g. 48×16

YEAR 6

Short multiplication of 2-, 3- and 4-digit numbers by 1-digit numbers e.g. 3743×6

Long multiplication of 2-, 3- and 4-digit numbers by 2-digit numbers

$$\begin{array}{r}
4 5 6 \\
x 3 8 \\
\hline
3 6 4 4 8 \\
1 3 6 8 0 \\
\hline
1 7 3 2 8 \\
\hline
1 1
\end{array}$$

INSPIRE our children to succeed

YEAR 5

Using number facts

Use times-tables facts up to 12×12 to multiply multiples of 10/100 of the multiplier

e.g. $4 \times 6 = 24$ so $40 \times 6 = 240$ and $400 \times 6 = 2400$

Use knowledge of factors and multiples in multiplication

e.g. 43 × 6 is double 43 × 3

e.g. 28 × 50 is half of 28 × 100 (2800) = 1400

Know square numbers and cube numbers

YEAR 6

Using number facts

Use times-tables facts up to 12×12 in mental multiplication of large numbers or numbers with up to 2 decimal places

e.g.
$$6 \times 4 = 24$$
 and $0.06 \times 4 = 0.24$

STRATEGIES AND METHODS OF MENTAL DIVISION

INSPIRE our children to succeed

YEAR 3

Counting in steps ('clever' counting)

Count in 2s, 3s, 4s, 5s, 8s and 10s

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

YEAR 4

Counting in steps (sequences)

Count in 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, 11s, 12s, 25s, 50s, 100s and 1000s

STRATEGIES AND METHODS OF MENTAL DIVISION

YEAR 3

Doubling and halving

Find half of even numbers to 100 using partitioning e.g. *find half of 48*

Use halving as a strategy in dividing by 2 e.g. $36 \div 2$ is half of 36 = 18 Find half of odd numbers

YEAR 4

Doubling and halving

Find half of even numbers to 200 and beyond using partitioning e.g. *find half of 258*

Begin to halve amounts of money e.g. £9 halved is £4.50

Use halving as a strategy in dividing by 2, 4 and 8 e.g. $164 \div 4$ is half of 164 (82) halved again = 41

STRATEGIES AND METHODS OF MENTAL DIVISION

YEAR 3

Grouping

Recognise that division is not commutative

e.g. 16 ÷ 8 does not equal 8 ÷ 16

Relate division to multiplications 'with holes in'

e.g.

count in 5s to find the answer

Divide multiples of 10 by 1-digit numbers

e.g.
$$240 \div 8 = 30$$

Begin to use subtraction of multiples of 10 of the divisor to divide numbers above the 10th multiple

e.g.
$$52 \div 4$$
 is 10×4 (40) and 3×4 (12) = 13

YEAR 4

Grouping

Use multiples of 10 times the divisor to divide by 1-digit numbers above the tables facts

$$\begin{array}{c}
3 \overline{\smash)45} \\
\underline{30} \\
15 \\
\underline{15} \\
0
\end{array}$$

$$\begin{array}{c}
5 \times 3 \\
15 \\
\end{array}$$

Divide multiples of 100 by 1-digit numbers using division facts e.g. $3200 \div 8 = 400$