YERTR 5

Compact column subtraction for numbers with up to 5 digits e.g. $16324-8516$

$$
\begin{array}{r}
151^{1}{ }^{1} \\
x^{5} 8^{1} \not 4^{4} \\
-\quad 8516 \\
\hline 7808 \\
\hline
\end{array}
$$

Continue to use counting up subtraction for subtractions involving money, including finding change

$$
\text { e.g. } £ 50-£ 28 \cdot 76
$$

Use counting up subtraction to subtract decimal numbers

Subtract related fractions

$$
\text { e.g. } 3 / 4-1 / 8=5 / 8
$$

NB Counting up subtraction provides a default method for ALL children

YERIR 6

Compact column subtraction for large numbers
e.g. $34685-16458$

$$
\begin{array}{r}
2 x^{1} \not 46^{7} \not 8^{1} 5 \\
-16458 \\
\hline 18227 \\
\hline
\end{array}
$$

Use counting up for subtractions where the larger number is a multiple or near multiple of 1000 or 10000
Use counting up subtraction when dealing with money
e.g. £100-£78.56
e.g. $£ 45 \cdot 23-£ 27 \cdot 57$

Use counting up subtraction to subtract decimal numbers

Subtract unlike fractions, including mixed numbers

$$
\begin{aligned}
& \text { e.g. } 3 / 4-1 / 3=5 / 12 \\
& \text { e.g. } 23 / 4-11 / 3=15 / 12
\end{aligned}
$$

NB Counting up subtraction provides a default method for ALL

YERB 3

Counting in steps ('clever' counting)

Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 8 \mathrm{~s}$ and 10 s

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

YEAR 4

Counting in steps (sequences)
Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}$ and 1000s

Doubling and halving
Find doubles to double 100 and beyond using partitioning e.g. double 126

Begin to double amounts of money
e.g. $£ 3 \cdot 50$ doubled is $£ 7$

Use doubling as a strategy in multiplying by 2,4 and 8
e.g. 34×4 is double 34 (68) doubled again $=136$

YERB 3

Doubling and halving
Find doubles of numbers to 50 using partitioning e.g. double 48

Use doubling as a strategy in multiplying by 2
e.g. 18×2 is double $18=36$

Grouping
Recognise that multiplication is commutative
e.g. $4 \times 8=8 \times 4$

Multiply multiples of 10 by 1 -digit numbers
e.g. $30 \times 8=240$

Multiply 'friendly' 2 -digit numbers by 1 -digit numbers e.g. 13×4

Using number facts
Know doubles to double 20
e.g. double 15 is 30

Know doubles of multiples of 5 to 100
e.g. double 85 is 170

Know $\times 2, \times 3, \times 4, \times 5, \times 8, \times 10$ tables facts

YERI 4

Grouping
Use partitioning to multiply 2-digit numbers by 1-digit numbers
e.g. 24×5

Multiply multiples of 100 and 1000 by 1-digit numbers using tables facts

$$
\text { e.g. } 400 \times 8=3200
$$

Multiply near multiples by rounding e.g.

$$
24 \times 19 \text { as }(24 \times 20)-24=456
$$

Using number facts
Know times-tables up to 12×12

\mathbf{x}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{1}$	1	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{2}$	2	4	6	8	10	12	14	16	18	20	11	24
$\mathbf{3}$	3	6	9	12	15	18	21	24	27	30	22	36
$\mathbf{4}$	4	8	12	16	20	24	28	32	36	40	33	48
$\mathbf{5}$	5	10	15	20	25	30	35	40	45	50	44	60
$\mathbf{6}$	6	12	18	24	30	36	42	48	54	60	55	72
$\mathbf{7}$	7	14	21	28	35	42	49	56	63	70	66	84
$\mathbf{8}$	8	16	24	32	40	48	56	64	72	80	77	96
$\mathbf{9}$	$\mathbf{9}$	18	27	36	45	54	63	72	81	90	88	108
$\mathbf{1 0}$	10	20	30	40	50	60	70	80	90	100	99	120
$\mathbf{1 1}$	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

YERB 5

Doubling and halving

Double amounts of money using partitioning
e.g. double $£ 6.73$

Use doubling and halving as a strategy in multiplying by
$2,4,8,5$ and 20
e.g. 58×5 is half of $58 \times 10(580)=290$

Grouping

Multiply whole numbers and decimals by $10,100,1000$ e.g. $3.4 \times 100=340$

Use partitioning to multiply 'friendly' 2 - and 3 -digit numbers by 1 -digit numbers
e.g. 402×6 as $400 \times 6(2400)$ and $2 \times 6(12)=2412$

Use partitioning to multiply decimal numbers by 1 -digit numbers
e.g. 4.5×3 as $4 \times 3(12)$ and $0.5 \times 3(1.5)=13.5$

Multiply near multiples by rounding e.g.
32×29 as $(32 \times 30)-32=928$

YERB 6

Doubling and halving

Double decimal numbers with up to 2 places using partitioning e.g. double 36 •73

Use doubling and halving as strategies in mental multiplication

Grouping

Use partitioning as a strategy in mental multiplication, as appropriate
e.g. 3060×4 as $3000 \times 4(12000)$ and $60 \times 4(240)=12240$
e.g. 8.4×8 as $8 \times 8(64)$ and $0.4 \times 8(3.2)=67.2$

Use factors in mental multiplication
e.g. 421×6 as 421×3 (1263) doubled $=2526$
e.g. 3.42×5 as half of $3.42 \times 10=17.1$

Multiply decimal numbers using near multiples by rounding e.g. 4.3×19 as $(4.3 \times 20)-4.3=81 \cdot 7$

YERB 3

Build on partitioning to develop grid multiplication e.g. 23×4

x	20	3
4	80	12

YEDR 4

Use grid multiplication to multiply 3-digit numbers by 1-digit numbers
e.g. 253×6

x	200	50	3
6	1200	300	18

Use a vertical written algorithm (ladder) to multiply 3-digit numbers by 1-digitnumbers
e.g. 253×6

$$
\begin{array}{rrr}
2 & 5 & 3 \\
& & 6 \\
& 1 & 8 \\
& 3 & 0 \\
& 0 & 0 \\
& 6 & 6 \times 200 \\
\times 1 & 2 & 0
\end{array} 0 \longleftarrow 6 \times 3
$$

Use grid multiplication to multiply 2-digit numbers by 2-digit numbers
e.g. 16×48

\times	10	6
40	400	240
8	80	48
$=$	$\frac{128}{768}$	

YERR 5

Yenir 6

Grid multiplication of numbers with up to 2 decimal places by 1digit numbers
e.g. $1 \cdot 34 \times 6$

x	$।$	0.3	0.04
6	6	1.8	0.24

Multiply fractions by 1 -digit numbers e.g. $3 / 4 \times 6=18 / 4=42 / 4=41 / 2$

NB Grid multiplication provides a default method for ALL children

Short multiplication of decimal numbers using $\times 100$ and $\div 100$
e.g. 13.72×6 as $(1372 \times 6) \div 100=82.32$

Short multiplication of money
e.g. $£ 13.72 \times 6$

Grid multiplication of numbers with up to 2 decimal places by 1digit numbers
e.g. $6 \cdot 76 \times 4$

x	6	0.7	0.06
4	24	2.8	0.24

Multiply simple pairs of proper fractions
e.g. $1 / 2 \times 1 / 4=1 / 8$

NB Grid multiplication provides a default method for ALL

 children
YERR 5

Short multiplication of 2-, 3- and 4-digit numbers by 1 -digit numbers e.g. 435×8

Long multiplication of 2-, 3-and 4-digit numbers by 'teen' numbers e.g. 48×16

Short multiplication of 2-, 3- and 4-digit numbers by 1 -digit numbers e.g. 3743×6

$$
\begin{array}{r}
3143 \\
\times \quad 6 \\
\hline 22458 \\
\hline 421
\end{array}
$$

Long multiplication of 2-, 3- and 4-digit numbers by 2-digit numbers

$$
\begin{array}{r}
456 \\
\times \quad 38 \\
\hline 36^{4} 4^{4} 8 \\
13^{1} 6^{1} 80 \\
\hline 17328 \\
\hline 11
\end{array}
$$

YEAR 5

Using number facts

Use times-tables facts up to 12×12 to multiply multiples of $10 / 100$ of the multiplier
e.g. $4 \times 6=24$ so $40 \times 6=240$ and $400 \times 6=2400$

Use knowledge of factors and multiples in multiplication
e.g. 43×6 is double 43×3
e.g. 28×50 is half of $28 \times 100(2800)=1400$

Know square numbers and cube numbers

Using number facts

Use times-tables facts up to 12×12 in mental multiplication of large numbers or numbers with up to 2 decimal places
e.g. $6 \times 4=24$ and $0.06 \times 4=0.24$

YEAR 3

Counting in steps ('clever' counting)
Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 8 \mathrm{~s}$ and 10 s

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

YERI 4

Counting in steps (sequences)

Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}$ and 1000s

YEBi 3

YEBR 4

Doubling and halving

Find half of even numbers to 100 using partitioning e.g. find half of 48

Use halving as a strategy in dividing by 2
e.g. $36 \div 2$ is half of $36=18$

Find half of odd numbers

YERB 3

YERI 4

Grouping

Recognise that division is not commutative
e.g. $16 \div 8$ does not equal $8 \div 16$

Relate division to multiplications 'with holes in'
e.g.
count in 5 s to find the answer

Divide multiples of 10 by 1 -digit numbers
e.g. $240 \div 8=30$

Begin to use subtraction of multiples of 10 of the divisor to divide numbers above the 10th multiple
e.g. $52 \div 4$ is $10 \times 4(40)$ and $3 \times 4(12)=13$

